

Danielle Lopes de Mendonça

Validação de métodos para determinação de 1hidroxipireno em bílis de peixes

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Química da PUC-Rio como requisito parcial para obtenção do grau de Mestre em Química Analítica.

Orientadora: Profa. Roberta Lourenço Ziolli

Rio de Janeiro

Fevereiro de 2008

Danielle Lopes de Mendonça

Validação de métodos para determinação de 1hidroxipireno em bílis de peixes

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Química da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof^a. Roberta Lourenço Ziolli Orientadora Departamento de Química – PUC-Rio

Prof. Ricardo Queiroz Aucélio Departamento de Química – PUC-Rio

> **Dra. Vanderléa de Souza** DQUIM – INMETRO – RJ

Dr. Arthur de Lemos ScofieldDepartamento de Química – PUC-Rio

Dra. Anabela Sousa de Oliveira IST – Lisboa

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 29 de fevereiro de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Danielle Lopes de Mendonça

Graduou-se em Bacharelado e Licenciatura em Química pela Universidade Federal Fluminense em 2005. É técnica em Química formada pelo Centro Federal de Educação Tecnológica de Química de Nilópolis/RJ em 1999.

Ficha Catalográfica

Mendonça, Danielle Lopes de

Validação de métodos para determinação de 1hidroxipireno em bílis de peixes / Danielle Lopes de Mendonça ; orientadora: Roberta Lourenço Ziolli. – 2008.

142 f.: il.; 30 cm

Química)-Pontifícia Dissertação (Mestrado em Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia

1. Química - Teses. 2. 1-hidroxipireno. 3. Validação de métodos analíticos. 4. HPLC. 5. Fluorescência. 6. Bílis de peixe. I. Ziolli, Roberta Lourenço. II. Universidade Católica do Rio de Janeiro. Departamento de Química. III. Título.

Aos meus pais e meu noivo por todo incentivo.

Agradecimentos

À minha orientadora, Roberta Lourenço Ziolli, pelo suporte durante a realização deste trabalho.

À doutoranda Roberta Lyrio, um agradecimento especial pelo auxílio prestado durante toda a realização deste trabalho, por todas as dicas e explicações, por toda a paciência em ensinar a mesma coisa várias vezes, pelo companheirismo, amizade e bom-humor durante os dias e madrugadas de realização deste trabalho.

Ao professor Ricardo Aucélio pelo empréstimo de equipamentos e pelo apoio e ajuda para que este trabalho pudesse ser concluído.

A todos os componentes do LEEA, principalmente Alessandra, Wagner, Elaine, Flávia, Eliane, Cabrini, Selma, pela ótima recepção no laboratório e pela boa vontade e auxílio no uso dos equipamentos.

Ao Paulo Couto, do INMETRO, pela imensa ajuda na parte de cálculos de incerteza e pela atenção e simpatia com a qual sempre me recebeu.

À professora Angela Wagener, pelo empréstimo de equipamentos, e a todos os componentes do LABMAM, principalmente ao Dr. Arthur Scofield pelo auxílio em relação ao HPLC.

Ao professor Reinaldo Calixto e a todos os componentes do LAAtom, principalmente ao Rodrigo.

A todos do LCF-DEM/PUC-Rio, principalmente à Tatiana, pela calibração de equipamentos.

À companheira de laboratório e amiga Mônica, pela ajuda, companheirismo, amizade e paciência e pela disponibilidade em ouvir queixas e lamentações.

À companheira de laboratório e amiga Rachel, pela ajuda, amizade e bom-humor durante a realização deste trabalho.

Às amigas Luciene, Cibele e Eliane pelo apoio e amizade.

Às amigas e companheiras de hora de almoço, principalmente Paula, Vanessa e Tatiane, pela amizade e bons momentos de distração e diversão.

A todos da secretaria do Departamento de Química, principalmente à Fátima, por todo o auxílio e amizade.

Ao CNPq e a PUC-Rio pelos auxílios concedidos, fundamentais para a realização deste trabalho.

A todos os familiares e amigos pela compreensão e incentivo.

Resumo

Mendonça, Danielle Lopes; Ziolli, Roberta Lourenço. **Validação de métodos para determinação de 1-hidroxipireno em bílis de peixes.** Rio de Janeiro, 2008. 142p. Dissertação de Mestrado — Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

O petróleo é uma mistura complexa de diversos compostos, sendo os hidrocarbonetos seus principais constituintes, chegando a atingir 98% da composição total. Entre os hidrocarbonetos, os hidrocarbonetos policíclicos aromáticos (HPA) destacam-se por serem, em geral, resistentes à biodegradação persistentes no ambiente. sendo potencialmente carcinogênicos ao homem e aos organismos. A presença destes compostos nos ecossistemas, de origem natural ou proveniente de fontes antropogênicas, e seus efeitos podem ser monitorados utilizando organismos do próprio ambiente. Nos ecossistemas aquáticos, a determinação de metabólitos de HPA na bílis de peixes que habitam o ambiente pode ser usada como indicadora de exposição ambiental recente. Assim, o desenvolvimento e a validação de métodos usualmente empregados na determinação de metabólitos de HPA em bílis de peixes têm contribuição e aplicação na elaboração de diagnósticos ambientais sobre a contaminação por petróleo e derivados nos sistemas aquáticos. Este trabalho otimizou, validou e comparou dois métodos para a determinação de 1hidroxipireno em bílis de peixes. Um método usando a cromatografia a liquido de alta eficiência com detector de fluorescência (HPLC-F) e o outro usando a espectroscopia de fluorescência convencional. Os métodos foram validados com base nos parâmetros linearidade, sensibilidade, limite de detecção, limite de quantificação, repetitividade, reprodutibilidade e incluindo os cálculos das incertezas associadas. Nos dois casos, as fontes de contribuição mais significativas para a incerteza dos métodos foram as soluções-padrão. A incerteza padrão combinada associada ao método utilizando a cromatografia a líquido foi menor que a associada ao método utilizando fluorescência molecular. Entretanto, o método em fluorescência, apesar de ser semi-quantitativo e de apresentar incerteza maior, tem tempo de análise e custos de operação e manutenção menores, sendo indicado para análises preliminares.

Palavras-chave

1-hidroxipireno, validação de métodos analíticos, HPLC, fluorescência, bílis de peixe.

Abstract

Mendonça, Danielle Lopes; Ziolli, Roberta Lourenço. **Method validation for the determination of 1-hydroxypyrene in fish bile.** Rio de Janeiro, 2008. 142p. MSc. Dissertation – Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Petroleum is a complex mixture of several compounds. Among its principal components there are hydrocarbons which account to up to 98% of the total composition. Among the hydrocarbons, there are polycyclic aromatic hydrocarbons (PAH), which are more resistant to biodegradation, quite persistent in the environment and potentially carcinogenic to humans and marine organisms. The presence of these compounds on ecosystems, from natural origin or from anthropogenic sources, and their efluorescênciaects, can be monitored using living organisms of the environment. In aquatic ecosystems, the determination of PAH metabolites, in fish bile from the environment can be used as an indicator of recent environmental exposure. Thus, the development and validation of methods usually employed in the determination of PAH metabolites in the bile of fish have assistance in the preparation and implementation of diagnoses on the environmental contamination by petroleum and derivatives in aquatic systems. In this work two methods for the determination of 1hydroxypyrene in fish bile were improved, validated and compared. A method using the high liquid chromatography with fluorescence detector (HPLC-F) and the other using fixed fluorescence spectroscopy. The methods were validated based on parameters linearity, sensitivity, limit of detection, limit of quantification, repeatability, reproducibility. In addition, calculations of the uncertainties associated to the 1-hydroxypyrene measurement were made. In both cases, the sources of most significant contribution to the methods uncertainty were the standard solutions. The combined standard uncertainty associated with the method using the liquid chromatography was lower than that associated with the method using molecular fluorescence. The fluorimetric method can be used as a semi-quantitative tool and presented greater uncertainty. However, this method has lower analysis time and costs of operation and maintenance, being quite suitable for preliminary analysis.

Keywords

1-hydroxypyrene, method validation, HPLC, fluorescence, fish bile.

Sumário

1 Introdução	19
1.1. Contextualização	19
1.2. Hidrocarbonetos policíclicos aromáticos	21
1.3. Fontes de contaminação por HPA	22
1.4. HPA como poluentes ambientais	23
1.5. HPA nos peixes	24
1.6. A escolha do composto de estudo	25
1.7. Metodologias para determinação de metabólitos de HPA em bílis	
de peixe	25
1.8. Técnicas analíticas	31
1.8.1. Espectroscopia de fluorescência molecular	31
1.8.1.1. Uso da espectroscopia de fluorescência molecular para	
determinação de HPA em bílis de peixe	33
1.8.2. Cromatografia a líquido de alta eficiência	33
1.8.2.1. Uso do HPLC para determinação de HPA em bílis de peixe	34
1.9. Validação de métodos	35
	40
2 Objetivos	46
2.1. Metas e objetivos	46
2.2. Justificativa e viabilização	47
3 Parte experimental	48
3.1. Material	48
3.2. Reagentes	48
3.3. Instrumentação e equipamentos	48
3.4. Metodologia	49
3.4.1. Coleta dos peixes e extração da bílis	49
3.4.2. Espectroscopia de fluorescência molecular	52
3.4.2.1. Determinação dos comprimentos de onda de excitação e emissão	52
3.4.2.2. Curva analítica no espectrofluorímetro	52
3.4.2.3. Análise das amostras de bílis no espectrofluorímetro	52

3.4.3. Cromatografia a líquido de alta eficiência	53
3.4.3.1. Escolha da fase móvel	53
3.4.3.2. Escolha do solvente para solubilização do padrão	54
3.4.3.3. Escolha da programação de eluição	54
3.4.3.4. Curva analítica no HPLC	55
3.4.3.5. Análise das amostras de bílis no HPLC	56
3.4.4. Parâmetros de validação dos métodos	56
3.4.4.1. Linearidade	57
3.4.4.2. Faixa de trabalho	57
3.4.4.3. Sensibilidade	57
3.4.4.4. Limite de detecção	57
3.4.4.5. Limite de quantificação	58
3.4.4.6. Precisão	58
3.4.4.7. Recuperação	60
4 Resultados e discussão	61
4.1. Espectroscopia de fluorescência molecular	61
4.1.1. Determinação dos comprimentos de onda de excitação e emissão	61
4.1.2. Curva analítica no espectrofluorímetro	62
4.1.3. Parâmetros de validação do método em fluorescência	64
4.1.3.1. Linearidade	64
4.1.3.2. Faixa de trabalho	64
4.1.3.3. Sensibilidade	64
4.1.3.4. Limite de detecção	65
4.1.3.5. Limite de quantificação	65
4.1.3.6. Precisão	66
4.1.3.7. Incerteza de medição	68
4.1.4. Análise das amostras de bílis no espectrofluorímetro	95
4.2. Cromatografia a líquido de alta eficiência	97
4.2.1. Escolha da fase móvel	97
4.2.2. Escolha do solvente para solubilização do padrão	98
4.2.3. Escolha da programação de eluição	98
4.2.4. Curva analítica por HPLC	99
4.2.5. Parâmetros de validação do método em HPLC	101
4.2.5.1. Linearidade	101
4.2.5.2. Faixa de trabalho	102
4.2.5.3 Sensibilidade	102

4.2.5.4. Limite de detecção	103
4.2.5.5. Limite de quantificação	103
4.2.5.6. Precisão	103
4.2.5.7. Recuperação	105
4.2.5.8. Incerteza de medição	106
4.2.6. Análise das amostras de bílis por HPLC	117
4.3. Comparação entre as duas técnicas estudadas	120
5 Considerações finais	123
6 Referências bibliográficas	126
7 Anexos	130

Lista de figuras

Figura 1-Estrutura de alguns HPA.	19
Figura 2-Estrutura do 1-hidroxipireno.	20
Figura 3-Exemplo da estrutura de alguns HPA hidroxilados.	
Fonte: Ariese, 2005b.	24
Figura 4-Esquema de biotransformação de xenobióticos.	
Fonte: Neves, 2006.	25
Figura 5-Métodos para determinação de HPA em bílis de peixe (Fonte:	
Ariese et al, 2005a).	31
Figura 6-Representação gráfica da metade dos intervalos de confiança (L)	
para as distribuições de probabilidade normal, retangular e triangular.	42
Figura 7- Diagrama causa e efeito.	42
Figura 8-Representação gráfica das distribuições de probabilidade normal.	43
Figura 9-Abertura do peixe pelo poro urogenital.	50
Figura 10-Localização da vesícula biliar.	50
Figura 11-Retirada da bílis com auxílio de seringa.	51
Figura 12-Bílis armazenada em ependorff.	51
Figura 13-Espectro de varredura do 1-hidroxipireno em espectrofluorímetro	62
Figura 14-Espectros de fluorescência para os padrões de 1-hidroxipireno.	62
Figura 15-Curva do 1-hidroxipireno obtida por fluorescência	63
Figura 16-Diagrama de causa-efeito para a técnica fluorimétrica.	68
Figura 17-Gráfico de balanço das incertezas associadas à concentração	
estoque.	73
Figura 18-Gráfico comparativo da contribuição das diferentes fontes de	
incerteza para fluorescência.	95
Figura 19-Espectros das amostras de bílis diluídas e hidrolisadas.	96
Figura 20-Cromatogramas obtidos para curva analítica do	
1-hidroxipireno em HPLC.	100
Figura 21-Curva analítica em HPLC para 1-hidroxipireno.	101
Figura 22-Cromatogramas obtidos nos testes de recuperação de uma	
amostra de bílis contaminada com 1-hidroxipireno em três	
diferentes concentrações.	105

Figura 23-Espinha de peixe (diagrama causa-efeito) inicial para o	
método em HPLC.	106
Figura 24- Espinha de peixe (diagrama causa-efeito) simplificada para	
o método em HPLC.	107
Figura 25-Gráfico de balanço das incertezas associadas ao método em	
HPLC.	117
Figura 26-Cromatogramas de algumas amostras de bílis hidrolisadas.	119
Figura 27-Cromatogramas de amostras de bílis diluídas 1:2000 e	
hidrolisada.	119
Figura 28- Cromatogramas de amostras de bílis diluídas 1:100 e bílis	
submetida ao processo de hidrólise.	120

Lista de tabelas

Tabela 1-Propriedades físico-químicas de alguns HPA.	22
Tabela 2-Concentrações de HPA em petróleo e derivados.	23
Tabela 3-Relação entre o nível de confiança e as distribuições.	44
Tabela 4-Relação entre o nível de confiança e o fator de abrangência	
para distribuição normal.	45
Tabela 5-Programação curta para análise de metabólitos de HPA.	55
Tabela 6-Programação longa para análise de metabólitos de HPA.	55
Tabela 7-Dados obtidos para curva analítica do 1-hidroxipireno em	
fluorímetro.	63
Tabela 8-Parâmetros das curvas analíticas da fluorescência.	63
Tabela 9-Análise de variância.	64
Tabela 10-Estatística de regressão.	65
Tabela 11-Resultados para avaliação do parâmetro repetitividade.	66
Tabela 12-Resultados para avaliação do parâmetro reprodutibilidade.	67
Tabela 13-Planilha com memória de cálculo do tratamento estatístico para avaliação da reprodutibidade.	67
Tabela 14- Resultado da reprodutibilidade do método.	67
Tabela 15-Planilha com memória de cálculo da incerteza associada à	
concentração estoque.	72
Tabela 16- Planilha com memória de cálculo para determinação da	
incerteza da diluição 1:25.	77
Tabela 17- Planilha com memória de cálculo para determinação da	
incerteza da diluição 1:33.	78
Tabela 18- Planilha com memória de cálculo para determinação da	
incerteza da diluição 1:50.	79
Tabela 19- Planilha com memória de cálculo para determinação da	
incerteza da diluição 1:100.	80
Tabela 20- Planilha com memória de cálculo para determinação da	
incerteza da diluição 1:200.	81
Tabela 21- Planilha com memória de cálculo para determinação da	
incerteza da diluição 1:400.	82
Tabela 22- Planilha com memória de cálculo para determinação da	
incerteza da concentração diluída C1.	85

rabela 23-Planlina com memoria de calculo para determinação da	
incerteza da concentração diluída C2.	86
Tabela 24-Planilha com memória de cálculo para determinação da	
incerteza da concentração diluída C4.	87
Tabela 25-Planilha com memória de cálculo para determinação da	
incerteza da concentração diluída C8.	88
Tabela 26-Planilha com memória de cálculo para determinação da	
incerteza da concentração diluída C12.	89
Tabela 27-Incertezas das concentrações diluídas.	90
Tabela 28-Planilha com memória de cálculo da incerteza associada	
à curva analítica.	92
Tabela 29-Incertezas obtidas para cada etapa.	94
Tabela 30-Concentrações em equivalentes de 1-hidroxipireno na	
amostra diluída e na bílis determinadas por fluorescência.	96
Tabela 31-Comparação entre a concentração em equivalentes de	
1-hidroxipireno obtida neste trabalho e em trabalho anterios do LEA.	97
Tabela 32-Dados obtidos para curva analítica do 1-hidroxipireno em HPLC.	100
Tabela 33- Parâmetros das curvas analíticas do HPLC.	101
Tabela 34-Análise de variância.	102
Tabela 35-Estatística de regressão.	102
Tabela 36-Resultados para avaliação do parâmetro repetitividade.	103
Tabela 37-Resultados para avaliação do parâmetro reprodutibilidade.	104
Tabela 38-Planilha com memória de cálculo do tratamento estatístico para avaliação da reprodutibidade.	104
Tabela 39-Resultado da reprodutibilidade do método.	105
Tabela 40-Recuperações obtidas para cada amostra contaminada.	106
Tabela 41-Planilha com memória de cálculo para o fator de diluição 1:2000.	109
Tabela 42-Planilha com memória de cálculo para o fator de diluição 1:20.	110
Tabela 43-Planilha com memória de cálculo associada à incerteza da	
concentração 0,2 ng mL ⁻¹ .	112
Tabela 44-Planilha com memória de cálculo associada à incerteza da	
concentração 20 ng mL ⁻¹ .	113
Tabela 45-Incertezas das concentrações diluídas.	114
Tabela 46-Planilha de cálculo da incerteza associada à curva analítica. Tabela 47-Incertezas obtidas para cada etapa.	115 117
Tabela 48- Concentrações de 1-hidroxipireno na amostra diluída e na	
bílis por HPLC.	118

Tabela 49-Comparação das concentrações de 1-hidroxipireno obtidas	
neste trabalho e disponíveis na Literatura.	120
Tabela 50-Comparação entre os parâmetros avaliados nas duas técnicas.	121
Tabela 51-Comparação entre as concentrações obtidas por	
fluorescência molecular e HPLC-F para as amostras de bílis.	122
Tabela 52-Resultado do teste de Pearson para avaliação da correlação	
entre os dois métodos.	122

Lista de quadros

Quadro 1-Parâmetros operacionais do HPLC.	49
Quadro 2-Parâmetros operacionais do HPLC.	56

Lista de siglas, abreviaturas e símbolos

HPA – Hidrocarbonetos policíclicos aromáticos

HPLC – Cromatografia a líquido de alta eficiência (do inglês *High Performance Liquid Chromatography*)

EPA – Agência Americana de Proteção Ambiental (do inglês *Environmental Protection Agency*)

 λ_{exc} – Comprimento de onda de excitação

λ_{em} – Comprimento de onda de emissão

u_c(C) – incerteza combinada associada à concentração estoque

u_c(v) - incerteza combinada associada ao volume

u_c(P) – incerteza combinada associada à pureza

u_c(m) – incerteza combinada associada à massa

UC – incerteza-padrão combinada

u_c(repro) – incerteza combinada associada à reprodutibilidade

u_c(repe) – incerteza combinada associada à repetitividade

u_c(curva) – incerteza combinada associada à curva analítica

u_c(cp) – incerteza combinada associada às concentrações-padrão